
Teratronik GmbH MTD16 Protocol

Teratronik
elektronische systeme gmbh

MTD16
Protocol

Date: 2015-02-05

1

MTD16 Protocol Teratronik GmbH

Table of Contents

1. Introduction..4
2. Typical use with TCP/IP..4
3. MTD16 Data Format...5
3.1 Frame format..5
3.2 Tag structure...6
4. Tag definition file..8
5. Debugging tools...9
6. Development tools...10
6.1 MTD16 Tag Definition Editor...11
6.2 Code generating tool...13
6.3 MTD16 Testing Tool..14
7. Appendix - Examples..25
7.1 C-Header..26
7.2 Lua..27
7.3 C++ Header..28
7.4 C++ lookup table..29
7.5 C#...30

2 2

Teratronik GmbH MTD16 Protocol

Date Author Changes
2012-02-05 O. Wölfelschneider, Teratronik GmbH Start

3

MTD16 Protocol Teratronik GmbH

1. Introduction

Message Tag Data or MTD16 is a data encapsulation used by multiple Teratronik products. It is a
binary format using a length-tag-data structure.

MTD16 does not provide transmission error detection or recovery. This is typically handled by
TCP/IP or, on serial ports, by an adequate serial encapsulation.

While being a fully binary message format that allows efficient use of bandwith even on slow links,
the idea of the protocol is to hide as much as possible of that binary data during software
development. This makes working with MTD16 feel closer to working with something like JSON
or XML.

Hiding of the binary numbers is done with the aid of several tools that automatically convert binary
message data to and from a human readable form. Also, during code development, the numeric
message codes are used by means of symbolic names only. Code generators automate the mapping
between message codes and symbolic names.

2. Typical use with TCP/IP

This is a description of a typical implementation when using TCP/IP for transport.

Clients connect to their server using the TCP protocol. Address and port of the server is configured
locally at the client.

The clients trust the error detection and retransmit capabilities of TCP. There is no further
checksumming in the payload. There is already a 32-bit CRC on the ethernet layer.

If a client or server detects an unrecoverable error in the data, it will disconnect and fail any pending
transaction.

Stations try to reconnect to the server using a random backoff algorithm. In case of a connection
failure, the first retry is after 500ms. Each further retry increases the delay by a random value
between 250ms and 500ms, up to a maximum of 5000ms. This mitigates a network storm when
multiple stations try to reconnect at the same time.

If encryption is required, then a standard SSL/TLS method is used. This is transparent to the
MTD16 protocol layer.

4 4

Teratronik GmbH MTD16 Protocol

3. MTD16 Data Format

Message contents are encoded in a binary tagged data format. This allows adding more message
fields at any time without much hassle.
The MTD16 format uses little endian mode (Low byte first) throughout its data.

3.1 Frame format

All tag and length fields are of 16 bit size and are sent low byte first. The length field indicates the
number of bytes following after the length field.

A message always consists of at least one outer tagged block. The field messageCode indicates the
kind of message, for example StatusReport or PrintReceipt.

The data variables of a message are itself encoded in the same tagged format as the outer message
frame.

Important: The protocol makes no guarantees about the order of tagged data fields inside a
message unless explicitly documented for the message. The receiver of a message must be
prepared to decode the fields in whatever order they arrive.

Good practice: Programs that are processing MTD16 messages should always expect that
there are tags inside a message that they do not expect. Do not log a warning or error in that
case. This allows extending the protocol without breaking older software.

Tagged Data

i Byte i+0 Byte i+1

0 Length

2 Tag

4 Data contents

i Byte i+0 Byte i+1

0 Length

2 Tag

4 Data contents

more...

Message Format

n Byte n+0 Byte n+1

0 messageLength

2 messageCode

4 Tagged Data

5

MTD16 Protocol Teratronik GmbH

3.2 Tag structure

The fields messageCode and Tag follow a basic structure. The upper bits of the 16 bit tag code
indicate the data type. This allows a debugger to print meaningful information without knowledge
of the actual application.

Basic Data types

For basic data types, the upper four bits of the tag code indicate the data type. The lower twelve bits
can be assigned freely.

0 - MTD16DT_Binary
Any data that does not fit the other data types.

1 - MTD16DT_Integer
Signed or unsigned integer value. The length of the data field is 1 .. 4 bytes. If the length is
less than four bytes, the missing bytes are assumed to be zero. Data type supports any kind of
integer between 8 and 32 bits.

2 - MTD16DT_Bool
One byte boolean field. Value 0x00 indicates false, anything else indicates true.

3 - MTD16DT_String
Text string. Usually encoded using UTF-8, unless application specifies otherwise.

4 - MTD16DT_Date
A calendar date, encoded as the days elapsed since 1990-01-01. Otherwise this field is
encoded like a basic integer.

5 - MTD16DT_Time
A calendar time, number of seconds since 00:00:00. Otherwise this field is encoded like a
basic integer.

6 - MTD16DT_DateTime
A combined calendar date/time. The field length is either eight or ten bytes. The first four
bytes encode the number of days since 1990-01-01. The second four bytes encode the
seconds since 00:00:00. If present, the last two bytes encode milliseconds (0...999). If the
millisecond data is not included, they are assumed to be zero.

7 - MTD16DT_BitArray
The data is interpreted as an array of single bits. The first byte contains bits 0..7, and so on.
Any bytes not present are assumed to be zero.

6 6

Teratronik GmbH MTD16 Protocol

8 – Extended
Indicates an extended data type, where the upper eight bits indicate the data type. Discussed
below in more detail.

9 - MTD16DT_NetworkAddress
Contains a network address in network byte order (MSB first). Field size is four bytes for
IPv4 addresses, 16 bytes for IPv6 addresses and six bytes for MAC addresses.

10 – reserved

11 – reserved

12 - MTD16DT_List
This is used for deeply nesting messages within messages. The data content is considered an
array of tagged data with multiple values having the same tag.

13 - MTD16DT_Request
This is used to encode the outer frame of a request message. The sender of such a request
expects to gets an answer to this request encoded as type MTD16DT_Answer.

14 - MTD16DT_Answer
Encodes the outer frame of a response message. Contains the answer to a message of type
MTD16DT_Request.

15 - MTD16DT_Message
This is used for deeply nesting messages within messages. The data content is again some
tagged data.

Extended Data Types

Extended data types encode the data type in the upper eight bits. The lower eight bits can be
assigned freely.

0x80 - MTD16DT_Point
Always contains four data bytes. The first two bytes encode the X coordinate, the final two
bytes encode the Y coordinate.

0x81 - MTD16DT_Rect
Always contains eight data bytes. Two bytes each are used in consecutive order: X
coordinate, Y coordinate, Width, Height.

0x82 - MTD16DT_Size
Always contains four data bytes. The first two bytes encode the width, the final two bytes
encode the height.

7

MTD16 Protocol Teratronik GmbH

4. Tag definition file

All tags and their codes are defined in an XML file that maps the numeric tag codes to human
readable names. When properly implemented, a programmer using the MTD16 system will almost
never have to deal with the numeric codes themselves.

This is an example definition file.

<?xml version="1.0" encoding="UTF-8"?> <!-- -*- nxml -*- -->
<mtd16>
 <!--Command Messages-->
 <tag name="Ping" id="0xD001"/>
 <tag name="Pong" id="0xE001"/>
 <tag name="StatusReport" id="0xD800"/>
 <tag name="StatusReportResponse" id="0xE800"/>
 <tag name="PrintReceipt" id="0xD802"/>
 <tag name="PrintReceiptResponse" id="0xE802"/>
 <!--Generic tags -->
 <tag name="StatusCode" id="0x1000" comment="Result status code" display="4x">
 <enums>
 <enum name="Success" id="0x0000" comment="Indicate success"/>
 <enum name="Error" id="0x0002" comment="Generic failure code"/>
 </enums>
 </tag>
 <tag name="MachineStatus" id="0x7620" comment="General machine status.">
 <bits>
 <bit name="Online" id="0"/>
 <bit name="Enabled" id="1" comment="Station is open to the public"/>
 </bits>
 </tag>
 <tag name="Text" id="0x3500" comment="Generic text field"/>
 <tag name="Name" id="0x3030" comment="Any name"/>
 <tag name="Index" id="0x1335"/>
 <tag name="Type" id="0x133C"/>
 <tag name="Key" id="0x3335"/>
</mtd16>

Commentary on the example file

The pair of tags Ping/Pong and also the pair StatusReport/StatusReportResponse are defined as
tag types Request and Response. This defines these pairs as being a message exchange that belongs
together.

The tag StatusCode has a nested list of enum values. This allows the programmer to use symbolic
enum names instead of numbers inside the source code. Also the debugger can use the symbolic
names when logging a message.

Similarily, the tag MachineStatus defines a nested list of bit values. This allows to store multiple
named flags inside one field of type BitArray. Again, in source code and when debugging, the
symbolic names are used.

A few generic tags, like Text or Name have been added. Their function depends on the message
inside which they appear.

XML style comments in the XML file are shown by the MTD16 tag editing tool when displaying
the file for editing.

The comment property seen with some tags is only used by the tag editing tool, where the comments
are displayed beside the tags.

The display property, also seen with some tags, can be used by a debugging tool to help formatting
the data contents of a field in a pleasing way. (TODO: Document the format of the display property)

8 8

Teratronik GmbH MTD16 Protocol

5. Debugging tools

There exists a human readable ASCII format for MTD16 that helps debugging the binary protocol.

Applications can dump the messages in this format to logging for tracing.

The mapping between the numeric tag codes and the names for logging purposes are taken from the
XML definition map file.

This is an example „Hello World!“ message.

12 00 02 D8 0E 00 00 35 48 65 6C 6C 6F 20 57 6F 72 6C 64 21

Green: Length fields, Blue: Tag fields

In debug format, a message looks like this:

PrintReceipt=(sText="Hello World!")

Features of the debug format:

• parentheses () indicate nesting

• Strings are printed in double quotes

• Tag names (can) have their data type prepended in abbreviated form

• For enums and bit arrays, symbolic names are printed

9

MTD16 Protocol Teratronik GmbH

6. Development tools

There are a few tools available to aid in software development.

• MTD16 Tag Definition Editor

This is a GUI tool that allows editing the contents of a tag definition XML file. The tool
especially helps avoiding assignment of the same numeric code to multiple tags.

The tool can generate source code from a tag file for C, C++, C# and Lua.

• Code generating tool

A commandline tool for use in build scripts, this little program can automatically convert a
tag definition XML file into source code for inclusion into an application. Available
languages are C, C++, C# and Lua.

• MTD16 Testing Tool

This tool does a live trace of messages as they are exchanged between to applications. It
does this by being configured as a proxy between two peers.

Armed with a tag definition XML file, the tool displays the message in a human readable
form for ease of debugging. Optionally it can also print the bytes as hexdump directly.

To get these development tools, download the latest Core4Manager package from this location:

 http://www.teratronik.org/core4/download /Windows /

This will install the tools together with a few other development tools which are not the subject of
this documentation. After installation, find the MTD16 tools in the start menu under Core4 SDK.

10 10

http://www.teratronik.org/core4/download/
http://www.teratronik.org/core4/download/
http://www.teratronik.org/core4/download/

Teratronik GmbH MTD16 Protocol

6.1 MTD16 Tag Definition Editor

This shows the main window of the tag editor, displaying the sample definition file from page 8.

The tags are displayed in the order as they appear in the XML file. XML file comments are shown
as section headings with a slight green background. Comment attributes of explicit tags are also
shown.

Hovering over a tag name with the mouse points displays the data type of the tag.

Tags that have enums or bits defined, are shown with a little arrow. Clicking the arrow displays
additional information.

11

MTD16 Protocol Teratronik GmbH

It is possible to navigate through the table with the cursor keys, or by clicking a cell with the mouse.
To edit a single cell, press F2. To edit the full row in a popup dialog, double click a row.

Have a look at the Edit menu, which allows insertion or deletion of lines or adding a enum or bit
definition branch to a tag. All editing options have optional hotkeys, as shown in the menu.

The following image shows a ham-fisted attempt to use the same code or name at two places. The
editor indicates the collision in red. The editor still allows saving of the file.

Fortunately, the editor supports Undo/Redo (Ctrl-Z, Ctrl-Y).

This is the editing tool that pops up when double clicking on a row.

Name and Value are already known. The settings for Display mode, Digits and Secure are only used
by debugging tools, like the MTD16 testing tool. The Display mode is applied to numeric values
and can be used to enforce display as Signed Decimal, Unsigned Decimal, Hex, Octal or Binary.
When forcing a number mode, the number of digits to display can also be selected. By setting the
Secure bit, the debugger will not show the contents of the tag when tracing a message. Use this for
e.g. credit card numbers.

12 12

Teratronik GmbH MTD16 Protocol

The View menu allows displaying the result of the source code generator for the current definition
file. It is possible to just cut+paste from the view into your source code, but there also exists a
scriptable command line tool to automate this. (Explained later in this document.)

See the appendix for examples of generated code.

6.2 Code generating tool

The commandline tool c4mkmtd converts a tag definition XML file into source code. The tool can
be integrated into build scripts to automatically include changes to the tag definitions into
application source code. When installed on windows, the tool typically resides in
C:\Program Files (x86)\Teratronik\Core4Manager\c4mkmtd.exe

When called with no arguments, the tool displays a short help notice:

Usage: c4mkmtd [<options>] <inputfile>

 -T,--trace=<n> Enable tracing level <n>
 -H,--header=<filename> Write C-Style header
 -L,--lua=<filename> Write Lua-Style code
 --c++-header=<filename> Write C++-Style header
 --c++-lut=<filename> Write C++-Style lookup table
 -#,--csharp=<filename> Write C#-Style code
 --prepend=<filename> (C++,C#) Prefix output with contents from file
 --append=<filename> (C++,C#) Add contents from file to end of output
 --suffix=<text> (C++,C#) Append text at end of each identifier

For example, this call generates both Lua and a C header at the same time:
c4mkmtd --header=example.h --lua=example.lua example.mtdef

See the appendix for examples of generated code.

13

MTD16 Protocol Teratronik GmbH

6.3 MTD16 Testing Tool

The MTD16 Testing Tool does a live trace of messages. It can be used in two ways:

• Direct control

With direct control, the testing tool communicates over a single channel with a peer. The
tool displays all messages from the peer, and in turn can send messages to the peer.

• Man-in-the-Middle mode

The testing tool is configured as a proxy between two other applications that are
communicating via MTD16. Messages received from one connection are forwarded to the
other, both ways. The tool displays all messages that it forwards.

14 14

Teratronik GmbH MTD16 Protocol

6.3.1 Main window of the testing tool

After starting, the tool automatically loads the tag definition file it was using last time. On first run,
or when switching projects, you will need to open a definition file using the File menu. The
example screenshot has loaded the example definition file from page 8.

The tool has already been configured to listen for incoming connections on port 12001. Connections
do not use encryption.

On the right hand side of the window is a list of Bookmarks. These bookmarks can be freely
configured to send a specific message. When clicking the bookmark, the message is sent through the
channel. In this example, a single bookmark has been defined that sends a simple Ping message. The
tool has been configured to display the message text and also a hexdump of the message raw data.

15

MTD16 Protocol Teratronik GmbH

6.3.2 Setting up a connection

The testing tool can handle two connections at the same time if required. This is necessary for the
proxy mode, where the tool can forward data between two other parties. Both connections are
handled identically. To configure a connection, Chose Preferences -> Connection 1 or Preferences
-> Connection 2 respectively.

Each connection can be configured to one of four modes.

• Disabled

The connection is not used.

• Serial

The connection uses a serial port. You will need to chose a port and speed settings.

• TCP client

The tool will open a TCP connection to a remote server. Parameters are server name or IP
address and the port number.

• TCP server

The tool listens for an incoming TCP connection from a remote client. Typically the listen
address is kept empty and a port number is chosen depending on the application.

For the two TCP modes, it is optionally possible to use SSL/TLS encryption. To use this, the tool
needs to know the proper keys. The standard certificate files can be selected via the provided
browse buttons.

16 16

Teratronik GmbH MTD16 Protocol

6.3.3 Connection Control

The connections are controlled by using the toolbar buttons on the top of the main window.

Each connection has a control button and an indicator for the encryption state. Click the control
button to cycle between the connection states.

• Connection closed or disabled

• TCP server mode is waiting for a connection

• Connection established

When connected:

• Unencrypted connection

• Encrypted connection

If two connections are used, the link button between the connections controls data forwarding:

• Data is not forwarded

• Data is being forwarded between both connections

Error injecting

• Only functional with serial connections. With a special error injection device, these buttons
can cause transmission errors on a serial connection to test error recovery procedures.

17

MTD16 Protocol Teratronik GmbH

Connection control (continued)

Beware of the pause button. The pause button stops updating the display. If you are not seeing any
data being logged, check that the pause button is not in pause state.

• Normal mode. Clicking the button turns on pause.

• Pause mode. Clicking the button resumes logging.

Trace selection

• Enables hexdump of the raw data bytes.

• Enables hexdump of the message data bytes.

• Decode and trace a human readable form of the messages.

Note that for TCP/IP, there is no difference between the two hexdump variants. Only when using
serial port mode, these hexdumps display data before and after the serial protocol encoding.

18 18

Teratronik GmbH MTD16 Protocol

6.3.4 Trace menu

The trace menu controls how the data logging is handled. The first
three items reflect the trace selection also available via the toolbar,
explained on the toolbar page.

• Relative time
When off, timestamps display the time when the message
was received in millisecond resolution.
When on, timestamps log the number of milliseconds since
the start of trace.

• Hungarian notation
When on, each tag name gets a short prefix indicating its
type. (Examples: s for string, i for integers, ...)

• Hide duplicates
Useful when a protocol with a lot of polling is traced.
When the same message is received multiple times in a
row, then it is not logged multiple times. Instead the log
window indicates a counter with the number of repeats.

• Add separator
Inserts a dashed line into the log. This is meant as a visual
aid and has no other function.

• Delete line
Single lines can be removed from the log

• Clear all
Erases the log window contents

• Auto scroll
When on, automatically scrolls the window to the last entry whenever a new entry is added.

• Log to file...
A file can be selected, where the received data is logged to.

• Stop logging
Stops the logging to a file.

• Replay log file
A previously generated log file is replayed into the log window.

• Replay hex dump
This can replay a log file that was generated with hex dumps on.

• Disturb channel
Only functional with serial connections. With a special error injection device, these buttons
can cause transmission errors on a serial connection to test error recovery procedures.

19

MTD16 Protocol Teratronik GmbH

20 20

Teratronik GmbH MTD16 Protocol

6.3.5 Direct message injection

At the bottom of the main window is an edit field that allows the entry of a message in human
readable format.

Clicking one of the two buttons on the right hand side will encode the message and send it to
Connection 1 or Connection 2, respectively.

The icon to the left of the message indicates where the last message has been sent to. Hitting enter
after typing in a message will always send to this connection.

6.3.6 Bookmark editor

The testing tool can keep a list of quick-access bookmarks. When clicking a bookmark, the message
that was previously stored is sent through the connection. The bookmarks are typically shown to the
side of the main menu. If they are hidden, get them back with Bookmarks -> Show Bookmarks.

To edit the bookmarks, chose the Edit Bookmarks from the Bookmarks menu.

21

MTD16 Protocol Teratronik GmbH

The example on the previous page shows two bookmarks being defined. The Print bookmark is
selected for editing.

Each bookmark has a name (Text). You can optionally enter a Tool tip text and chose an Icon from a
graphics file.

A keyboard shortcut can be entered. When that shortcut is pressed in the main window, the
bookmark is activated.

The message field takes the message formatted as human readable text. Of course, this can only
work if a proper tag definition XML file has been loaded previously. As the message is being typed
in, the tool checks the message interactively for correctness. Any error it finds is marked with a red
squiggly line.

Once you're done entering a new bookmark, save it with Apply. The button Revert will undo the
edits.

The arrow buttons in the middle can be used to change the order of bookmarks. Each arrow moves
the selected bookmark in its direction.

The + and - buttons add and delete bookmarks, respectively.

Bookmarks must be saved to a bookmark file after editing using the Bookmarks menu and Save
Bookmarks or Save Bookmarks As.

When the testing tool ist started, it will always try to open the last bookmark file that was used.

A bookmark that is being triggered is either sent to Connection 1 or Connection 2. The connection
number is indicated by the icon at the bottom left of the window. This icon changes when using
Direct Message Injection, see page 21.

22 22

Teratronik GmbH MTD16 Protocol

6.3.7 Using the testing tool as a proxy

An interesting use during software development is to use the tool as a proxy between two
applications. The tool logs the exchanged messages and helps finding bugs and gettings things done.

Lets assume a testing scenario with one client and one server. The client knows it must reach its
server at IP 10.0.0.1, port 12001.

Client Server

IP: 10.0.0.50 IP: 10.0.0.1 Port 12001

Server IP: 10.0.0.1

Server Port: 12001

Now lets put the testing tool, running on a PC with IP 10.0.0.20, inbetween.

Client Testing tool Server

IP: 10.0.0.50 IP: 10.0.0.20 IP: 10.0.0.1 Port 12001

Server IP: 10.0.0.20

Server Port: 12001

Connection 1:

TCP Server

Port 12001

Connection 2:

TCP Client

Server IP: 10.0.0.1

Server Port: 12001

Necessary steps:
• The actual client must be reconfigured to use the testing tool as its server.
• The testing tool's Connection 1 is set up as a TCP server where the client can reach it.
• The Connection 2 is set up as a TCP client that connects to the actual server.
• Make sure both connections are enabled (Their toolbar buttons are not red.)
• Also make sure the forwarding is enabled via the link button on the toolbar.

Once this has been set up, the testing tool will forward messages between both peers, while
displaying the message contents.

It is even possible to inject messages in the data stream via the testing tool, using bookmarks or the
direct entry at the bottom of the window.

Of course, it is often possible to run the testing tool on the same computer as one or both of the
peers being traced. Simply chose different port numbers for both connections.

23

MTD16 Protocol Teratronik GmbH

6.3.8 Tracing example

Here is another screenshot with a little more complexity.

The direct entry tool at the bottom has been used to enter a few different Hello World messages.

Hexdump has been turned on to display message contents. In a real world debugging sessions, the
hexdump is most likely always turned off once the message encoding/decoding layers have been
finished in the application. This follows the idea that the programmer has the least possible need to
actually touch the numbers.

The second and third Hello World samples have been selected for detailed view with the little arrow
to the left of the line. Detailed view displays each tag field on a separate line for clarity.

24 24

Teratronik GmbH MTD16 Protocol

7. Appendix - Examples

This is the example definition file, repeated from page 8. On the following pages, the output of the
code generator for several languages is shown.

<?xml version="1.0" encoding="UTF-8"?> <!-- -*- nxml -*- -->
<mtd16>
 <!--Command Messages-->
 <tag name="Ping" id="0xD001"/>
 <tag name="Pong" id="0xE001"/>
 <tag name="StatusReport" id="0xD800"/>
 <tag name="StatusReportResponse" id="0xE800"/>
 <tag name="PrintReceipt" id="0xD802"/>
 <tag name="PrintReceiptResponse" id="0xE802"/>
 <!--Generic tags -->
 <tag name="StatusCode" id="0x1000" comment="Result status code" display="4x">
 <enums>
 <enum name="Success" id="0x0000" comment="Indicate success"/>
 <enum name="Error" id="0x0002" comment="Generic failure code"/>
 </enums>
 </tag>
 <tag name="MachineStatus" id="0x7620" comment="General machine status.">
 <bits>
 <bit name="Online" id="0"/>
 <bit name="Enabled" id="1" comment="Station is open to the public"/>
 </bits>
 </tag>
 <tag name="Text" id="0x3500" comment="Generic text field"/>
 <tag name="Name" id="0x3030" comment="Any name"/>
 <tag name="Index" id="0x1335"/>
 <tag name="Type" id="0x133C"/>
 <tag name="Key" id="0x3335"/>
</mtd16>

25

MTD16 Protocol Teratronik GmbH

7.1 C-Header

#ifndef MTD16_TAGS_H /* Automagically generated -- do not edit */
#define MTD16_TAGS_H

#define MTD16DT_Binary 0
#define MTD16DT_Integer 1
#define MTD16DT_Bool 2
#define MTD16DT_String 3
#define MTD16DT_Date 4
#define MTD16DT_Time 5
#define MTD16DT_DateTime 6
#define MTD16DT_BitArray 7
#define MTD16DT_NetworkAddress 9

#define MTD16DT_List 12
#define MTD16DT_Request 13
#define MTD16DT_Answer 14
#define MTD16DT_Message 15

#define MTD16DT_ExtPoint 0x80
#define MTD16DT_ExtRect 0x81
#define MTD16DT_ExtSize 0x82

#define MSG_Ping 0xD001 /* Request */
#define MSG_Pong 0xE001 /* Answer */
#define MSG_StatusReport 0xD800 /* Request */
#define MSG_StatusReportResponse 0xE800 /* Answer */
#define MSG_PrintReceipt 0xD802 /* Request */
#define MSG_PrintReceiptResponse 0xE802 /* Answer */

#define TAG_StatusCode 0x1000 /* Integer */
#define TAG_MachineStatus 0x7620 /* BitArray */
#define TAG_Text 0x3500 /* String */
#define TAG_Name 0x3030 /* String */
#define TAG_Index 0x1335 /* Integer */
#define TAG_Type 0x133C /* Integer */
#define TAG_Key 0x3335 /* String */

#define ENU_StatusCode_Success 0x0000
#define ENU_StatusCode_Error 0x0002

#define BIT_MachineStatus_Online 0
#define BIT_MachineStatus_Enabled 1
#define MSK_MachineStatus_Online 0x01
#define MSK_MachineStatus_Enabled 0x02

#endif

26 26

Teratronik GmbH MTD16 Protocol

7.2 Lua

-- Automagically generated -- do not edit

mtd16.lutTag = {
 Ping = 0xD001, -- Request
 Pong = 0xE001, -- Answer
 StatusReport = 0xD800, -- Request
 StatusReportResponse = 0xE800, -- Answer
 PrintReceipt = 0xD802, -- Request
 PrintReceiptResponse = 0xE802, -- Answer

 StatusCode = 0x1000, -- Integer
 MachineStatus = 0x7620, -- BitArray
 Text = 0x3500, -- String
 Name = 0x3030, -- String
 Index = 0x1335, -- Integer
 Type = 0x133C, -- Integer
 Key = 0x3335, -- String
}

mtd16.lutStatusCode = {
 Success = 0x0000,
 Error = 0x0002,
}

mtd16.lutBitMachineStatus = {
 Online = 1,
 Enabled = 2,
}

27

MTD16 Protocol Teratronik GmbH

7.3 C++ Header

#ifndef MTD16_ENUMS_H /* Automagically generated -- do not edit */
#define MTD16_ENUMS_H

namespace MTD16 {

 namespace Type {
 enum T {
 Binary = 0,
 Integer = 1,
 Bool = 2,
 String = 3,
 Date = 4,
 Time = 5,
 DateTime = 6,
 BitArray = 7,
 NetworkAddress = 9,

 List = 12,
 Request = 13,
 Answer = 14,
 Message = 15,

 ExtPoint = 0x80,
 ExtRect = 0x81,
 ExtSize = 0x82,
 };
 };

 namespace Cmd {
 enum T {
 Ping = 0xD001,
 Pong = 0xE001,
 StatusReport = 0xD800,
 StatusReportResponse = 0xE800,
 PrintReceipt = 0xD802,
 PrintReceiptResponse = 0xE802,
 };
 };

 namespace Tag {
 enum T {
 StatusCode = 0x1000,
 MachineStatus = 0x7620,
 Text = 0x3500,
 Name = 0x3030,
 Index = 0x1335,
 Type = 0x133C,
 Key = 0x3335,
 };
 };

 namespace StatusCode {
 enum T {
 Success = 0x0000,
 Error = 0x0002,
 };
 };

 namespace MachineStatusBits {
 enum T {
 Online = 0,
 Enabled = 1,
 };
 };

 namespace MachineStatus {
 enum T {
 Online = 0x01,
 Enabled = 0x02,
 };
 };

};

#endif

28 28

Teratronik GmbH MTD16 Protocol

7.4 C++ lookup table

#ifndef MTD16_LOOKUP_H /* Automagically generated -- do not edit */
#define MTD16_LOOKUP_H

namespace MTD16 {

 static const NameLookupTable nameLookupToplevelTags[] = {
 { "ToplevelTags", 0 }, // Name and type of the lookup table
 { "Ping", 0xD001 }, // Request
 { "Pong", 0xE001 }, // Answer
 { "StatusReport", 0xD800 }, // Request
 { "StatusReportResponse", 0xE800 }, // Answer
 { "PrintReceipt", 0xD802 }, // Request
 { "PrintReceiptResponse", 0xE802 }, // Answer

 { "StatusCode", 0x1000 }, // Integer
 { "MachineStatus", 0x7620 }, // BitArray
 { "Text", 0x3500 }, // String
 { "Name", 0x3030 }, // String
 { "Index", 0x1335 }, // Integer
 { "Type", 0x133C }, // Integer
 { "Key", 0x3335 }, // String
 { 0, 0 },
 };

 static const NameLookupTable nameLookupStatusCode[] = {
 { "StatusCode", 1 }, // Name and type of the lookup table
 { "Success", 0x0000 },
 { "Error", 0x0002 },
 { 0, 0 },
 };

 static const NameLookupTable nameLookupMachineStatus[] = {
 { "MachineStatus", 2 }, // Name and type of the lookup table
 { "Online", 0 },
 { "Enabled", 1 },
 { 0, 0 },
 };

 static const TagLookupTable tagLookup[] = {
 { ~0U, nameLookupToplevelTags },
 { 0x1000, nameLookupStatusCode },
 { 0x7620, nameLookupMachineStatus },
 { 0x7620, nameLookupMachineStatus },
 { 0, 0 },
 };

};

#endif

29

MTD16 Protocol Teratronik GmbH

7.5 C#

public enum TagID
{
 Ping = 0xD001,
 Pong = 0xE001,
 StatusReport = 0xD800,
 StatusReportResponse = 0xE800,
 PrintReceipt = 0xD802,
 PrintReceiptResponse = 0xE802,

 StatusCode = 0x1000,
 MachineStatus = 0x7620,
 Text = 0x3500,
 Name = 0x3030,
 Index = 0x1335,
 Type = 0x133C,
 Key = 0x3335,
}

public enum StatusCodeEnums
{
 Success = 0x0000,
 Error = 0x0002,
}

public enum MachineStatusBits
{
 Online = 0,
 Enabled = 1,
}

public enum MachineStatusMasks
{
 Online = 0x01,
 Enabled = 0x02,
}

30 30

	1. Introduction
	2. Typical use with TCP/IP
	3. MTD16 Data Format
	3.1 Frame format
	3.2 Tag structure

	4. Tag definition file
	5. Debugging tools
	6. Development tools
	6.1 MTD16 Tag Definition Editor
	6.2 Code generating tool
	6.3 MTD16 Testing Tool
	6.3.1 Main window of the testing tool
	6.3.2 Setting up a connection
	6.3.3 Connection Control
	6.3.4 Trace menu
	6.3.5 Direct message injection
	6.3.6 Bookmark editor
	6.3.7 Using the testing tool as a proxy
	6.3.8 Tracing example

	7. Appendix - Examples
	7.1 C-Header
	7.2 Lua
	7.3 C++ Header
	7.4 C++ lookup table
	7.5 C#

